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Discontinuities in Symmetric StriPlines Due to Impedance

Steps and Their Compensations

VAHAKN NALBANDIAN, MEMBER, IEEE, AND WILLEM STEENAART,

.4bsfracf-The theoretically known magnitude of the series

lumped reactance, as a function of impedance step ratio, resulting
from an impedance step discontinuity in symmetric stripline is con-

firmed, and an alternative expression for the inductance is given.
A reduction of this reactance has been achieved by splitting the

narrower strip at the impedance step junction into a multistrip con-

figuration, while retainiig the total characteristic impedance value.

A way of compensating the effect of the reactance on the pass-

band characteristics of quarter-wave impedance transformers and
filters is developed. This is achieved by the introduction of a lumped

series capacitance at the impedance step discontinuity.

1. INTRODUCTION

I

N 1955, Oliner [1] indicated that when impedance

step discontinuities occur in symmetric striplines,l

reactance are introduced. An approximate formula

for this reactance as a function of the impedance step

ratio was given. Successful experimental measurements

have not been made previously to verify Oliner’s for-

mula. lWicrostrip and stripline designers have, to date,

overlooked this lumped reactance and its effect on the

passband characteristics.

The purpose of this investigation was to experi-

mentally confirm the existence of the series lumped

reactance and its relationship to the impedance step

ratios, to investigate the effect of the inductance on

quarter-wave transformers, and to give methods to

reduce or compensate for this effect.

11. THE EQUIVALENT CIRCUIT FOR A

STEP DISCONTINUITY

The approximate magnetic field lines (found experi-

mentally by field mapping) of a stripline with step dis-

continuity in the center conductor (top view) are similar

to the electric field lines of a parallel-plate transmission

line with step discontinuity in the plate separation, as

seen in Figs. 1 and 2. The normalized equivalent circuit

for a step discontinuity of the plate spacing of a parallel-

plate transmission line has been given by several authors

[1]- [4]. The most detailed and accurate derivation has
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Fig. 1. The magnetic field lines of a stripliue near a step discontinu-
ityy (top view).

Fig. 2. The electric field lines of a parallel-plate transmission line
near a step discontinuity (side view).

been given by Schwinger [4]. This discontinuity effec-

tively is a shunt capacitance with a normalized suscep-

tance
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In (1) and (2), A is the wavelength in a medium of

dielectric constant e, and both S’ and S are the narrow

and the wide spacings between the plates, respectively

(Fig. 2). By applying the duality principle [4, chapter

3, section 10] to (1), the equivalent circuit (Fig. 3) for
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Fig.3. Theequivalent circuit of Fig. 1.

a step discontinuity in the center strip width (Fig. 1)

includes a series inductor. The inductive reactance for

thecase ofzero thickness center stripis

x 2DK
—~—

20 x
(3)

where A andacan be found when S’ and Sin (1) and

(2) are replaced by D’ and D, respectively. D’ and D are

the equivalent strip widths; an accurate value of D is
given by [5] and, to a good approximation, for w/b
>0.5, by

30~b 2b
D= _Gw+—ln2

z~<% n-
(4)

where b is the spacing between the ground plates and w

is the physical center strip width. 20 in (3) corresponds

to the characteristic impedance of the stripline of width

w.

Equation (3) can be rewritten as

30b
L=— K

c
(5)

where c is the velocity of light in free space. The lumped

inductor and the impedance step are at a distance of

very nearly (b In 2)/r away from the physical junction

because of the fringing field lines [5], as represented by

the line lengths shown in Fig. 3.

Oliner [1], [5], also using the duality principle, ob-

tained a series inductance

‘=?’n[csc(:a)]
(6)

This result applies for a b/A~O, and when a approaches

zero, (6) approaches (5) as shown in Fig. 7.

II 1. THE EFFECT OF THE SERIES LUMPED INDUCTORS

ON THE REFLECTION COEFFICIENT OF

QUARTER-WAVE TRANSFORMERS
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Fig. 4. The input reflection coefficient versus the frequency for a
one-section transformer with inductors of different reactance at
the impedance step discontinuities.

where P is the phase constant per unit length of the line.

Extending this to the transfer matrix for the two-

section quarter-wave transformer with three lumped

series reactance gives

ljtan(3d
I

1

1. (8)
—— 1

11 J
01

22

The magnitude of the reflection coefficient of a trans-

former placed between impedances 20 and Z~ is [6]

[
I p(@)] = (A’z~ – D~zo)2 + (B, - ct,Zo.zL)2 1,21(A,ZL + D,ZO)2 + (1?, + C,ZOZ.)2 ‘

‘i == 1,2, (9)

The transfer matrix for a single-section transformer

of length d and normalized characteristics impedance

of 21, with normalized lumped series reactance Xl and

X2 at each end, is

L Al JL J

The passband characteristics of one- and two-section

(maximally flat) impedance transformers, matching

impedances of 50 Q (ZO) and 5 Q (Z~), are given in Figs.

4 and 5, respectively, for various values of Fib, where b
is the stripline ground-plate separation in centimeters

and FI corresponds to the frequency (in gigahertz) for

which each line section is a half wavelength long. Figs.

4 and 5 show that as the series reactance increases (or

Flb increases), the passband narrows, shifts to lower

frequencies, and the reflection coefficient of the pass-

band increases. These effects may be minimized with the

methods that will be outlined in Sections V and VI.
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Fig. 5. The input reflection coefficient versus the frequency for a
two-section maximally flat transformer with inductors of differ-
ence reactance at the Impedance step discontmuities.

Iv.

The

THE EXPERIMENTAL DETERMINATION OF THE

SERIES INDUCTANCE OF STEP IMPEDANCE

DISCONTINUITIES

method developed for measuring the series

inductance is based on the stripline configuration of

Fig. 6(a). When the strip at the right is match termi-

nated, the normalized input impedance to the center

section of impedance 21 is

~ , = ZJ (1 + jX’) cos @d + Z1’j sin~d
*

Z1’ cos ~d + (1 + jX’)j sin @
+ jx’. (lo)

For zero reflection, Zi’ = 1 and (10) can be solved for X’

to yield

X’ = 21’ cot ~d + (Z1’z CSC2@d – 1) 1/2. (11)

The positive sign in (11) is used when 21’> 1; the nega-

tive sign is used when 21’<1. To find X’ experimentally,

the frequency is varied and whenever the reflection

coefficient is a minimum, (11) is met. The reflection

coefficient might not reach zero due to small reflections

in the system. Knowing the values of 21’, G?, and f?

= ((27r(G) 1/2) /(Ao)), the values of the lumped induc-

tances may be calculated.

Equation (11) also holds for the configuration of Fig.

6(b), but X and 21 should be normalized to the charac-

teristic impedance of the wider strip (10 !2) and the

tapered impedance transformers should have very low

reflection coefficients. The tapered impedance trans-

formers that were used have a reflection coefficient

P<O.07 when Zt= 10 fl.

The comparison of the experimental results for Fig.

Fig. 6. The center strip configurations used to a @5
measure the series inductance. ( ‘“u .1.
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Fig. 7. The comparison of the theoretical and the experimental
values of the discontinuity inductors as a function of impedance
ratio.

6(a) or (b) with the theoretically derived values of the

lumped inductances is shown in Fig. 7, where errors in

21’ and frequency measurements were taken into

consideration.

V. THE REDUCTION OF THE LUMPED INDUCTORS

BY MEANS OF MULTISTRIPS

In a stripline circuit, one strip of higher impedance

between two wider strips of lower impedance can be

split into n multiple strips with the equivalent total

characteristic impedances of the single strip. This will

not affect the circuit characteristics, assuming junction

lum~ed inductors do not exist. In this section, the.
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Fig. 9. The illustration of an intermediate transition portion
between awide strip and narrow multistrips.

change in junction lumped inductance due to this ar-

rangement will be investigated. The characteristic im-

pedances and the effective width of these striplines are

illustrated in Fig. 8.

Consider the wider strip to be divided into n parts of

equal effective widths Di (Di =Ddn) by an imaginary
dotted line just before it is split into n narrower multi-

strips, as seen in Fig. 9. Let this stage be called the inter-

mediate stage.

Since the current going from the wide strip into the

intermediate stage does not experience any path change,
,,

there wdl not be any junction lumped reactance. Also,

the total characteristic impedance does not change.

Carrying equal currents, the strips are also at equal

voltages to ground, and are therefore uncoupled.

Let the characteristic impedance and the effective

width of each of the narrow multistrips be Z~ and D~,

respective y. Let Lm be the junction lumped inductance

between one narrow strip (of effective width DJ and

one part of the intermediate stage (of effective width

D,). This inductance can be obtained from (6):

30b

()

T D~ 30b

()

n- z,
Lm=—lncsc –— =—lncsc ––— . (12)

c 2 Di c 2 7.

Let LI be the junction inductance between the wide

strip (of effective width Do) and the single strip (of

effective width DI). Then

30b

()

r D1 30b

()

T Zo
Ll=–—lncsc ––— =–—lncsc ––— (13)

c 2 Do c 2 Z1
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Fig. 10, The comparison of the theoretical and the experimental
values of inductances of discontinuities involving multistrip
configuration.

It is found by substitution in (13) and (14) that

LI = Lm. (15)

Therefore, the lumped inductance (LJ between the

wide strip and the single strip [Fig. 8(a) ] is equal to the

lumped inductance (Lm) between an intermediate stage

of the wide strip and a multistrip. LT k the equivalent

of n inductances Lm in parallel:

The experimental procedure of measuring the lumped

inductance at the junction of a single strip and the

multistrip parallel lines is the same as the procedure

used to measure the lumped inductance at the junction

of two single strips. The results of the measurements for

two and three parallel multistrips are shown in Fig. 10

and are compared with the theoretical values.

VI. THE COMPENSATION OF THE INDUCTOR

BY A LUMPED CAPACITOR

The effect of the series inductor at an impedance step

discontinuity may be reduced by placing a lumped

capacitor in series with the inductor so that the total

reactance is zero at a given frequency (e. g., at band

center).

A lumped junction capacitor can be realized by
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TABLE I

THE COMI~ARISON or THE fkWUMENrAL AND ~IiE THEORWLTCAL

VALLTES OF THELLJMPED CAPACITANCES BETWEEN T\VO

OVERLAPPING CENTER CONDUCTING SrRIPs
—

Dielec- Capacitance
tric F$y~qu~Ry

Thick- Total
(pF)

ness Minimum Reactance (F&:;;j
(mm)

(Theo-
(GHz) (Q) retical)

0.000 3.151+0.008 15.10+0.20 w cc
0.025 3.312 ~0.010 12.20 ~0.20 13.03*1.30 8.9+1.2
0.050 3.435+0.010 9.71 ~0.20 6.84k0.56 4.5~0,6
0.075 3.532 ~0.010 7.79k0.20 4.91*0.30 3.0+0.4
0.100 3.628+0.010 5.90~0.20 3.81*1.22 2.22 +0.3

separating the center conductors at the junction by

means of a gap. If s is the gap width, the equivalent

circuit will consist of a lumped series capacitor with a

capacitance of [1]

(17)

and two shunt inductors which are ignored because their

susceptance approaches zero as s/b <0.1, which is the

condition used to get a capacitor as large as possible.

The capacitance obtained by this method is generally

too small to compensate the lumped series capacitance.

Another method of introducing a lumped series

capacitor large enough to compensate the inductor is by

overlapping the center strips with a very thin dielectric

film between. The length of the overlap should be small

(less than 0.05A) in order to consider the capacitors as

lumped.

The concept of compensating a stripline step junction

lumped inductance by the introduction of a lumped

capacitance was tested experimentally. The configura-

tion shown in Fig. 6(b) was modified by making the

1042 stripline overlap the tapered line sections by 2.0

mm at each end. One or more layers of 0.025-mm thick

Mylar sheet pieces were placed between the overlap,

forming lumped capacitors. The total reactance at the

junction was measured (see Table I) for zero to four

layers of Mylar sheet. Knowing the inductive reactance

from the first measurement, the capacitive reactance

was calculated, and from this the capacitance value was

obtained. Comparison with the theoretical (parallel-

plate, without fringing) capacitance shows some devia-

tion which can be attributed to the fringing capacitance

and the assumption of constant inductance with de-

creasing capacitance values.

The inaccuracies of the measurement system are

reflected in the second and third columns of Table I, the

resulting inaccuracy in measured capacitance being

around + 10 percent. The error resulting from inaccu-

racy in the physical dimensions of the overlapping con-

ductors further accounts for the discrepancies between

measured and computed capacitance.

The effect of capacitive compensation of series lumped

inductors on the passband characteristics of a one-

section quarter-wave impedance transformer is shown
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Fig. 11. The input reflection coefficient versus the frequency for a
one-section transformer with capacitive compensation of the
inductors.

in Fig. 11 for several different values of capacitors.

When the length of the transformer is a quarter-wave

long, the reflection coefficient at the center of the pass-

band is zero, but the passband is narrower.

VI 1. CONCLUSION

An alternative formulation of the magnitude of the

series lumped inductance in the equivalent circuit of

stripline impedance step discontinuity has been ob-

tained. This inductance has been measured and the

results have been compared to the theoretical values. It

was found that the theoretical values computed from

the two formulations were in substantial agreement with

each other and with measurements.

A means of reducing this series lumped inductance

has been developed by splitting the narrower strip at

the impedance step junction into multistrips while re-

taining the characteristic impedance value.

It was found that this series inductance narrows the

passband of impedance transformers, shifts the pass-

band to lower frequencies, and increases the passband

reflection coefficient.

Introduction of a lumped series capacitor at the

impedance step discontinuity successfully compensated

for this inductor, made the passband of the impedance

transformer resemble the ideal one, and gave the strip-

line circuit designer a means of reducing the effect of

this inductance.

Due to similarities between stripline and microstrips,

all the results presented should be qualitatively appli-

cable to microstrips also.
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Further work will be required to fully evaluate the

effect of the inductive reactance, together with its com-

pensations, in microstrip and stripline designs of imped-

ance transformers and filters.
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Waveguides of Arbitrary Cross Section by Solution of a

Nonlinear Integral Eigenvalue Equation

BARRY E. SPIELMAN, MEMBER, IEEE, AND ROGER F. BARRINGTON, FELLOW, IEEE

Abstract—The problem of electromagnetic wave propagation

in hollow conducting waveguides of arbitrary cross section is for-

mulated as an integro-differential equation in terms of fields at the

waveguide boundary. Cutoff wave numbers and wall currents appear

as eigenvalues and eigenfunctions of a nonlinear eigenvalue problem
involving an integro-differentiaf operator. A variational solution is
effected by reducing the problem to matrix form using the method
of moments.

A specific solution of the problem is developed using triangle
expansion functions in the method of moments. The solution is sim-
plified by symmetry considerations and is implemented by two digi-

tal computer programs. Listings and fuff documentation of these
programs are available. This solution yields accurate determinations

of cutoff wave numbers, wall currents, and distributions of both

longitudinal and transverse modal field components for the first

several modes. Illustrative computations are presented for the single-
ridge waveguide, which has a complicated boundary shape that does
not lend itself to exact solution.

1. INTRODUCTION

LECTROMAGNETIC wave propagation in hol-

E
low conducting waveguides of arbitrary cross

section is a problem of considerable interest. An

interesting review paper by Davies [1] gives a compara-

tive discussion of many of the methods previously ap-

plied to this general problem. His discussion makes clear

that no single solution method has proved to be best for

all requirements that might be imposed.

In this paper a new solution for waveguides of arbi-

trary cross section is presented. The approach is based

on an integral operator formulation which affords a

unified treatment of the various classes of waveguide

shape. In principle, the first several modes can be ana-
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lyzed provided the boundary of the waveguide is closed.

The convergence characteristics and accuracy of the

method have been demonstrated previously [2]. Ex-

ample calculations of cutoff wave numbers and field

distributions are presented here for modes of the single-

ridge waveguide.

II. INTEGRAL FORMULATION

The problem is formulated as follows. For waveguides

containing only a homogeneous isotropic medium, the

electric field within the waveguide is expressed in terms

of the vector potential A and scalar potential @ as

E = –jJA – VI#I (1)
where

J
A = p JG(kR)dl (2)

c

$
~ = ; rrG(kR)dl. (3)

c

Here, G(kR) is the two-dimensional Green’s function

and can be expressed in terms of HO(2), the Hankel func-

tion of the second kind zero order as

G(kR) = : I?,(2) (kR) . (4)

Also, C is the contour bounding the waveguide cross

section, dl is the element of arc along C, R is the distance

between a source point and the field point, k is the wave

number, and p and c are the permeability and permit-

tivity of the medium within the waveguide. The quan-

tities J and u are the wall current and charge, respec-

tively, related by the equation of continuity. The


