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Discontinuities in Symmetric Striplines Due to Impedance

Steps and Their Compensations

VAHAKN NALBANDIAN, MEMBER, IEEE, AND WILLEM STEENAART, SENIOR MEMBER, IEEE

Abstract—The theoretically known magnitude of the series
lumped reactance, as a function of impedance step ratio, resulting
from an impedance step discontinuity in symmetric stripline is con-
firmed, and an alternative expression for the inductance is given.

A reduction of this reactance has been achieved by splitting the
narrower strip at the impedance step junction into a multistrip con-
figuration, while retaining the total characteristic impedance value.

A way of compensating the effect of the reactance on the pass-
band characteristics of quarter-wave impedance transformers and
filters is developed. This is achieved by the introduction of a lumped
series capacitance at the impedance step discontinuity.

I. INTRODUCTION

N 1955, Oliner [1] indicated that when impedance
I[ step discontinuities occur in symmetric striplines,’

reactances are introduced. An approximate formula
for this reactance as a function of the impedance step
ratio was given. Successful experimental measurements
have not been made previously to verify Oliner’s for-
mula. Microstrip and stripline designers have, to date,
overlooked this lumped reactance and its effect on the
passband characteristics.

The purpose of this investigation was to experi-
mentally confirm the existence of the series lumped
reactance and its relationship to the impedance step
ratios, to investigate the effect of the inductance on
quarter-wave transformers, and to give methods to
reduce or compensate for this effect.

II. TuE EQUiVALENT CIRCUIT FOR A
StEP DISCONTINUITY

The approximate magnetic field lines (found experi-
mentally by field mapping) of a stripline with step dis-
continuity in the center conductor (top view) are similar
to the electric field lines of a parallel-plate transmission
line with step discontinuity in the plate separation, as
seen in Figs. 1 and 2. The normalized equivalent circuit
for a step discontinuity of the plate spacing of a parallel-
plate transmission line has been given by several authors
[1]-[4]. The most detailed and accurate derivation has
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1 Hereafter,

“stripline” will be understood to refer to symmetric
stripline.

Fig. 1. The magnetic field lines of a stripline near a step discontinu-

ity (top view).
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Fig. 2. The electric field lines of a parallel-plate transmission line

near a step discontinuity (side view).

been given by Schwinger [4]. This discontinuity effec-
tively is a shunt capacitance with a normalized suscep-
tance

B 28 % )
Yo A
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In (1) and (2), N is the wavelength in a medium of
dielectric constant e and both S’ and .S are the narrow
and the wide spacings between the plates, respectively
(Fig. 2). By applying the duality principle [4, chapter
3, section 10] to (1), the equivalent circuit (Fig. 3) for
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Fig. 3. The equivalent circuit of Fig. 1.

a step discontinuity in the center strip width (Fig. 1)
includes a series inductor. The inductive reactance for
the case of zero thickness center strip is
X 2DK
S 3)
Zy A
where A and « can be found when 5" and S in (1) and
(2) are replaced by D’ and D, respectively. D’ and D are
the equivalent strip widths; an accurate value of D is
given by [5] and, to a good approximation, for w/b
>0.5, by
30xb n 2b I 2 @
= —r~q -+ —In
ZoVe L
where b is the spacing between the ground plates and w
is the physical center strip width. Z; in (3) corresponds
to the characteristic impedance of the stripline of width
w.
Equation (3) can be rewritten as

308
L=-—K

[

D

)

where ¢ is the velocity of light in free space. The lumped
inductor and the impedance step are at a distance of
very nearly (b In 2) /7 away from the physical junction
because of the fringing field lines [5], as represented by
the line lengths shown in Fig. 3.

Oliner [1], [5], also using the duality principle, ob-
tained a series inductance

L= E(C)—Ii In [csc G- a):l. (6)

This result applies for a /A=20, and when « approaches
zero, (6) approaches (5) as shown in Fig. 7.

I11. Tur EFFECT OF THE SERIES LUMPED INDUCTORS
OoN THE REFLECTION COEFFICIENT OF
QUARTER-WAVE TRANSFORMERS

The transfer matrix for a single-section transformer
of length d and normalized characteristics impedance
of Zy, with normalized lumped series reactances X; and
X, at each end, is

4 B 14X
[ 2o}
Ci1 Dy 0o 1

jZ1 tan ﬁd ‘_1 ng

1
-I_j tan 8d (N

S G
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Fig. 4. The input reflection coefficient versus the frequency for a
one-section transformer with inductors of different reactances at
the impedance step discontinuities.

where 8 is the phase constant per unit length of the line.

Extending this to the transfer matrix for the two-
section quarter-wave transformer with three lumped
series reactances gives

A4 By Ay By
|: ] = cos? 3d
Cs D, C: Dy
I‘ 1 jZ, tan Bd‘l 1 ]Xg"
-1 7 tan 8d . 8
foenp 1 J 0 1| ®
Zs
The magnitude of the reflection coefficient of a trans-
former placed between impedances Z, and Z, is [6]

(4.2, — D.Zop)? + (B; — C"‘ZOZL)211I2
(AiZ + D.Zo)* + (B, + CZoZ1)? ]
i=1,2. (9

o] =

The passband characteristics of one- and two-section
(maximally flat) impedance transformers, matching
impedances of 50  (Z,) and 5 Q (Z1), are given in Figs,
4 and 3, respectively, for various values of Fib, where &
is the stripline ground-plate separation in centimeters
and Fy corresponds to the frequency (in gigahertz) for
which each line section is a half wavelength long. Figs.
4 and 5 show that as the series reactance increases (or
Fib increases), the passband narrows, shifts to lower
frequencies, and the reflection coefficient of the pass-
band increases. These effects may be minimized with the
methods that will be outlined in Sections V and VI.
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Fig. 5. The input reflection coefficient versus the frequency for a

two-section maximally flat transformer with inductors of differ-
ence reactances at the impedance step discontinuities.

IV. TeE EXPERIMENTAL DETERMINATION OF THE
SERIES INDUCTANCE OF STEP IMPEDANCE

DIiSCONTINUITIES

The method developed for measuring the series
inductance is based on the stripline configuration of
Fig. 6(a). When the strip at the right is match termi-
nated, the normalized input impedance to the center
section of impedance Z; is

(1 + §X’) cos Bd + Z,'j sin Bd
t 7y cos Bd + (1 + 7X’)4 sin Bd

’

X', (10)

For zero reflection, Z;/ =1 and (10) can be solved for X’
to yield

X' = Z/ cotBd + (Zy? csc?Bd — 1)V (11)

The positive sign in (11) is used when Z,’>1; the nega-
tive sign is used when Zy’ < 1. To find X" experimentally,
the frequency is varied and whenever the reflection
coefficient is a minimum, (11) is met. The reflection
coefficient might not reach zero due to small reflections
in the system. Knowing the values of Z{/, d, and 8
= ((2m(e)Y2)/(No)), the values of the lumped induc-
tances may be calculated.

Equation (11) also holds for the configuration of Fig.
6(b), but X and Z; should be normalized to the charac-
teristic impedance of the wider strip (10 €) and the
tapered impedance transformers should have very low
reflection coefficients. The tapered impedance trans-
formers that were used have a reflection coefficient
p<0.07 when Z; =10 .

The comparison of the experimental results for Fig.
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Fig. 6. The center strip configurations used to w'v“’
measure the series inductance. NL
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Fig. 7. The comparison of the theoretical and the experimental
values of the discontinuity inductors as a function of impedance
ratio.

6(a) or (b) with the theoretically derived values of the
lumped inductances is shown in Fig. 7, where errors in
Z{ and {frequency measurements were taken into
consideration,

V. TaE REDUCTION OF THE LUMPED INDUCTORS
BY MEANS OF MULTISTRIPS

In a stripline circuit, one strip of higher impedance
between two wider strips of lower impedance can be
split into #» multiple strips with the equivalent total
characteristic impedances of the single strip. This will
not affect the circuit characteristics, assuming junction
lumped inductors do not exist. In this section, the
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Fig. 8. A single strip and its equivalent multistrip circuit.
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Fig. 9. The illustration of an intermediate transition portion
between a wide strip and narrow multistrips.

change in junction lumped inductance due to this ar-
rangement will be investigated. The characteristic im-
pedances and the effective width of these striplines are
illustrated in Fig. 8.

Consider the wider strip to be divided into » parts of
equal effective widths D; (D;=Dy/n) by an imaginary
dotted line just before it is split into # narrower multi-
strips, as seen in Fig. 9. Let this stage be called the inter-
mediate stage.

Since the current going from the wide strip into the
intermediate stage does not experience any path change,
there will not be any junction lumped reactances. Also,
the total characteristic impedance does not change.
Carrying equal currents, the strips are also at equal
voltages to ground, and are therefore uncoupled.

Let the characteristic impedance and the effective
width of each of the narrow multistrips be Z,, and D,
respectively. Let L, be the junction lumped inductance
between one narrow strip (of effective width D,,) and
one part of the intermediate stage (of effective width
D,). This inductance can be obtained from (6):

300 m Dy, 308 T Z,
Ln=—1Incsc <— —) = ——1Incsc (— ——). (12)
c 2 c 2 7

7 m

Let L; be the junction inductance between the wide
strip (of effective width D,) and the single strip (of
effective width D). Then

306 r Dy 306 T Zo
Ly =-—Incsc{— ~—> = —1Inecsc|—- ——> (13)
¢ 2 Dy c 2 7

since
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Fig. 10. The comparison of the theoretical and the experimental
values of inductances of discontinuities involving multistrip
configuration.

e == 14
Do D¢ 1 Zm ( )

It is found by substitution in (13) and (14) that
L1 = Lm. (15)

Therefore, the lumped inductance (L;) between the
wide strip and the single strip [Fig. 8(a) ] is equal to the
Jumped inductance (L) between an intermediate stage
of the wide strip and a multistrip. Ly is the equivalent
of n inductances L, in parallel:

Li  La

Lpy=-—=—"- (16)

n 7 A
The experimental procedure of measuring the lumped
inductance at the junction of a single strip and the
multistrip parallel lines is the same as the procedure
used to measure the lumped inductance at the junction
of two single strips. The results of the measurements for
two and three parallel multistrips are shown in Fig. 10
and are compared with the theoretical values.

VI. TeE COMPENSATION OF THE INDUCTOR
BY A LuMmPED CAPACITOR

The effect of the series inductor at an impedance step
discontinuity may be reduced by placing a lumped
capacitor in series with the inductor so that the total
reactance is zero at a given frequency (e.g., at band
center).

A lumped junction capacitor can be realized by
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TABLE I

Tue COMPARISON OF THE EXPERIMENTAL AND THE THEORETICAL
VALUES oF THE LuMpED CAracrrances BETweeN Two
OVERLAPPING CENTER CONDUCTING STRIPS

Dielec- Capacitance

tric Frequency ®F
Thick- of VSWR Total

ness Minimum Reactance (Experi- (Theo-
(mm) (GHz) [(9)] mental) retical)
0.000 3.151+0.008 15.10+4+0.20 © ©
0.025 3.312+0.010 12.20+0.20 3.03+£1.30 8.9+1.2
0.050 3.435+0.010 9.71+0.20 6.84+0.56 4.5+0.6
0.075 3.5324+0.010 7.7940.20 4.914+0.30 3.0%0.4
0.100 3.628+0.010 5.901+0.20 3.81+£1.22 2.22+0.3

separating the center conductors at the junction by
means of a gap. If 5 is the gap width, the equivalent
circuit will consist of a lumped series capacitor with a
capacitance of [1]

b(e)ti? TS
C =— In |:coth <—>:|
27!'620 2b

and two shunt inductors which are ignored because their
susceptance approaches zero as s/b<0.1, which is the
condition used to get a capacitor as large as possible.
The capacitance obtained by this method is generally
too small to compensate the lumped series capacitance.

Another method of introducing a lumped series
capacitor large enough to compensate the inductor is by
overlapping the center strips with a very thin dielectric
film between. The length of the overlap should be small
(less than 0.05\) in order to consider the capacitors as
lumped.

The concept of compensating a stripline step junction
lumped inductance by the introduction of a lumped
capacitance was tested experimentally. The configura-
tion shown in Fig. 6(b) was modified by making the
10-Q stripline overlap the tapered line sections by 2.0
mm at each end. One or more layers of 0.025-mm thick
Mylar sheet pieces were placed between the overlap,
forming lumped capacitors. The total reactance at the
junction was measured (see Table 1) for zero to four
layers of Mylar sheet. Knowing the inductive reactance
from the first measurement, the capacitive reactance
was calculated, and from this the capacitance value was
obtained. Comparison with the theoretical (parallel-
plate, without fringing) capacitance shows some devia-
tion which can be attributed to the fringing capacitance
and the assumption of constant inductance with de-
creasing capacitance values.

The inaccuracies of the measurement system are
reflected in the second and third columns of Table I, the
resulting inaccuracy in measured capacitance being
around + 10 percent. The error resulting from inaccu-
racy in the physical dimensions of the overlapping con-
ductors further accounts for the discrepancies between
measured and computed capacitance.

The effect of capacitive compensation of series lumped
inductors on the passband characteristics of a one-
section quarter-wave impedance transformer is shown
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Fig. 11. The input reflection coefficient versus the frequency for a
one-section transformer with capacitive compensation of the
inductors.

in Fig. 11 for several different values of capacitors.
When the length of the transformer is a quarter-wave
long, the reflection coefficient at the center of the pass-
band is zero, but the passband is narrower.

VII. CoNCLUSION

An alternative formulation of the magnitude of the
series lumped inductance in the equivalent circuit of
stripline impedance step discontinuity has been ob-
tained. This inductance has been measured and the
results have been compared to the theoretical values. It
was found that the theoretical values computed from
the two formulations were in substantial agreement with
each other and with measurements.

A means of reducing this series lumped inductance
has been developed by splitting the narrower strip at
the impedance step junction into multistrips while re-
taining the characteristic impedance value.

It was found that this series inductance narrows the
passband of impedance transformers, shifts the pass-
band to lower frequencies, and increases the passband
reflection coefficient.

Introduction of a lumped series capacitor at the
impedance step discontinuity successfully compensated
for this inductor, made the passband of the impedance
transformer resemble the ideal one, and gave the strip-
line circuit designer a means of reducing the effect of
this inductance.

Due to similarities between stripline and microstrips,
all the results presented should be qualitatively appli-
cable to microstrips also.



578

Further work will be required to fully evaluate the
effect of the inductive reactance, together with its com-
pensations, in microstrip and stripline designs of imped-
ance transformers and filters.
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W aveguides of Arbitrary Cross Section by Solution of a

Nonlinear Integral Eigenvalue Equation

BARRY E. SPIELMAN, MEMBER, IEEE, AND ROGER F. HARRINGTON, FELLOW, IEEE

Abstract—The problem of electromagnetic wave propagation
in hollow conducting waveguides of arbitrary cross section is for-
mulated as an integro-differential equation in terms of fields at the
waveguide boundary. Cutoff wave numbers and wall currents appear
as eigenvalues and eigenfunctions of a nonlinear eigenvalue problem
involving an integro-differential operator. A variational solution is
effected by reducing the problem to matrix form using the method
of moments.

A specific solution of the problem is developed using triangle
expansion functions in the method of moments. The solution is sim-
plified by symmetry considerations and is implemented by two digi-
tal computer programs. Listings and full documentation of these
programs are available. This solution yields accurate determinations
of cutoff wave numbers, wall currents, and distributions of both
longitudinal and transverse modal field components for the first
several modes. Illustrative computations are presented for the single-
ridge waveguide, which has a complicated boundary shape that does
not lend itself to exact solution.

I. INTRODUCTION

TNLECTROMAGNETIC wave propagation in hol-
] low conducting waveguides of arbitrary cross

LA section is a problem of considerable interest. An
interesting review paper by Davies [1] gives a compara-
tive discussion of many of the methods previously ap-
plied to this general problem. His discussion makes clear
that no single solution method has proved to be best for
all requirements that might be imposed.

In this paper a new solution for waveguides of arbi-
trary cross section is presented. The approach is based
on an integral operator formulation which affords a
unified treatment of the various classes of waveguide
shape. In principle, the first several modes can be ana-
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lyzed provided the boundary of the waveguide is closed.
The convergence characteristics and accuracy of the
method have been demonstrated previously [2]. Ex-
ample calculations of cutoff wave numbers and field
distributions are presented here for modes of the single-
ridge waveguide.

II. INTEGRAL FORMULATION

The problem is formulated as follows. For waveguides
containing only a homogeneous isotropic medium, the
electric field within the waveguide is expressed in terms
of the vector potential A and scalar potential ¢ as

E = —jwA — V¢ (1)
where
A=ud JGER) (2)
C
1
$=— f oG(ER)dl (3)
C

Here, G(kR) is the two-dimensional Green’s function
and can be expressed in terms of H(®, the Hankel func-
tion of the second kind zero order as

G(kR) = 4% Hy®(kR). (4)

Also, C is the contour bounding the waveguide cross
section, d/ is the element of arc along C, R is the distance
between a source point and the field point, & is the wave
number, and u and € are the permeability and permit-
tivity of the medium within the waveguide. The quan-
tities J and ¢ are the wall current and charge, respec-
tively, related by the equation of continuity. The



